Signatures in a Giant Radio Galaxy of a Cosmological Shock Wave at Intersecting Filaments of Galaxies

نویسندگان

  • Torsten A. Enßlin
  • Patrick Simon
  • Peter L. Biermann
  • Ulrich Klein
  • Sven Kohle
  • Philipp P. Kronberg
  • Karl-Heinz Mack
چکیده

Sensitive images of low-level, Mpc-sized radio cocoons offer new opportunities to probe large scale intergalactic gas flows outside clusters of galaxies. New radio images of high surface brightness sensitivity at strategically chosen wavelengths of the giant radio galaxy NGC 315 (Mack et al. 1997, 1998) reveal significant asymmetries and particularities in the morphology, radio spectrum and polarization of the ejected radio plasma. We argue that the combination of these signatures provides a sensitive probe of an environmental shock wave. Analysis of optical redshifts in NGC 315 vicinity confirms its location to be near, or at a site of large-scale flow collisions in the 100 Mpc sized Pisces-Perseus Supercluster region. NGC 315 resides at the intersection of several galaxy filaments, and its radio plasma serves there as a ‘weather station’ (Burns 1998) probing the flow of the elusive and previously invisible IGM gas. If our interpretation is correct, this is the first indication for a shock wave in flows caused by the cosmological large scale structure formation, which is located in a filament of galaxies. The possibility that the putative shock wave is a source of gamma-rays and ultra high energy cosmic rays is briefly discussed. Subject headings: acceleration of particles – shock waves – intergalactic medium – large-scale structure of universe – galaxies: individual (NGC 315) – galaxies: clusters: individual (Pisces-Perseus-Supercluster)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stellar Populations in the Central Galaxies of Fossil Groups

It is inferred from the symmetrical and luminous X-ray emission of fossil groups that they are mature, relaxed galaxy systems. Cosmological simulations and observations focusing on their dark halo and inter-galactic medium properties confirm their early formation. Recent photometric observations suggest that, unlike the majority of non-fossil brightest group galaxies (BGGs), the central early-t...

متن کامل

Pulsating red giant and supergiant stars in the Local Group dwarf galaxy Andromeda I

We have conducted an optical long-term monitoring survey of the majority of dwarf galaxies in the Local Group, with the Isaac Newton Telescope (INT), to identify the long period variable (LPV) stars. LPV stars vary on timescales of months to years, and reach the largest amplitudes of their brightness variations at optical wavelengths, due to the changing temperature. They trace stellar populati...

متن کامل

Shock Waves of the Large-scale Structure Formation in the Universe

Simulations of structure formation in the Universe predict accretion shock waves at the boundaries of the large-scale structures as sheets, filaments, and clusters of galaxies. If magnetic fields are present at these shocks, particle acceleration should take place, and could contribute to the observed cosmic rays of high energies. When the radio plasma of an old invisible radio lobe is dragged ...

متن کامل

Giant ringlike radio structures around galaxy cluster Abell 3376.

In the current paradigm of cold dark matter cosmology, large-scale structures are assembling through hierarchical clustering of matter. In this process, an important role is played by megaparsec (Mpc)-scale cosmic shock waves, arising in gravity-driven supersonic flows of intergalactic matter onto dark matter-dominated collapsing structures such as pancakes, filaments, and clusters of galaxies....

متن کامل

Particle Acceleration and Diffusion in Fossil Radio Plasma

The strong activity of radio galaxies should have led to a nearly ubiquitous presence of fossil radio plasma in the denser regions of the inter-galactic medium as clusters, groups and filaments of galaxies. This fossil radio plasma can contain large quantities of relativistic particles (electrons and possibly protons) by magnetic confinement. These particles might be released and/or re-energize...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000